

工藤 和彦氏 略歴 昭和19年 能本県生まれ

昭和41年 九州大学工学部生産機械工学科卒業

昭和46年 九州大学大学院博士課程生產機械工学専攻修了

●工学博士

●原子力安全委員会原子炉安全専門審査会委員

●九州エネルギー問題懇話会委員

電所では運転や点検作業に伴い、床の洗 浄水や作業服、手袋、紙など放射能レベル の低い「低レベル放射性廃棄物」が発生し ます。これらの廃棄物は各発電所で圧縮・ 焼却などの処理を施されセメントに混ぜて、ド ラム缶に収納します。このドラム缶が「低レベ ル放射性廃棄物埋設センター」に輸送され るのです。センターでは、これらのドラム缶を 岩盤の上に設置した鉄筋コンクリート製のピッ トに納めます。そして埋設設備に点検路を取 り付け、側面を水を通しにくいベントナイト(粘 土の一種)混合土で覆い、その上に4m以上 の土砂などを被せて緑化するのです。施設 規模は最終的に、200リットルドラム缶300万 本分。これは日本の原子力発電所で過去に 発生し、発電所で保管している分と、これか ら発生する「低レベル放射性廃棄物」約100 年分の容量です。

行程のすべてを終え、一行は最初に訪れたゲストルームへ。迎えていただいたのは、九州電力出身の磯部靖一郎日本原燃(株)常務取締役でした。「思っていた以上に、安全への配慮が行き届き、警備も厳重ですね」と工藤先生。「それはもう。しかし情報公開も我々の大きな義務です。隣接したPRセンターなどでの対応やパンフレットなどで、補いたいと思っているのですが」と磯部常務。その他、地域の雇用促進や、社員の教育システム、環境モニタリングの重要性など会話は楽しく弾みました。

原子燃料サイクル施設を後にしたのは、 午後4時。周りを包んでいた「やませ」の霧も ようやく晴れ、心なしか気温も上がっていた ようでした。

▲ 見学を終え、日本原燃(株)の磯部常務(右)と歓談する工藤先

表紙写真:白神山地(青森県岩木町にて撮影)

▲2010年度を目途にプルサーマルを実施予定の玄海原子力発電所(3号機

いつか「やませ」が晴れる日のために。 六ヶ所村訪問を終えて

「やませ」の霧と冷えに迎えられた六ヶ所 村の原子燃料サイクル施設訪問。その風景 は、まさしく「原子燃料サイクル」に対する一 部の方々の霧と冷えを表しているようでした。 間違った先入観、一部のマスコミの不必要 な危機意識の煽り、さまざまな心無い風評…。 それらが、この施設と真摯な取り組みを覆い 隠し、本質を見誤らせているのです。見学を 終えての対談で、磯部常務は「実際に見な ければ、本質を知ろうとしなければ、わからな い真実があるんですしとおっしゃいました。警 備の関係上、一般の見学は難しいかもしれ ませんが、この施設と六ヶ所村の真実を知る ことは誰にでもできるはずです。皆さん一人 ひとりが、まっすぐに純な目で感じていただけ れば…。「下北をエネルギー半島にしたい」 とも常務はおっしゃいました。その言葉に感 じられた情熱は、自らを改めて奮い立たせて くれるものでした。私も及ばずながら、さまざま なかたちでお手伝いしていこうと思います。 いつか、この霧がすっきりと晴れる日まで。(九 州大学大学院工学研究院エネルギー量子 工学部門 教授 工藤 和彦)

「六ヶ所村から」

原子燃料サイクル施設について

原子燃料サイクル施設は、通常 運転時はもちろんですが、火災、漏 洩などの万一の故障や事故を想 定しても、施設区域外の一般公衆 への放射線による影響を防止する ため、多重防護の考え方に基づい た安全設計が行われています。ま た、地震や航空機の衝突に対して も対策が施されており、これらは、 設計・工事・運転の各段階にわたっ て国の厳重な安全規制によりチェッ クされています。これに対して県及 び村では、国にすべてを委ねるだ けでなく、立地している地方公共 団体として、地域住民の安全確保 のため、事業者と安全協定を締結 しています。

核燃料サイクルについては、経済性だけでなく、資源が少ないこと、自ら資源を作りたいという意思、環境への対応を、総合的に考えるべきだと思います。

九エネ懇のエナジィ& エコロジー情報誌 とおおっく No342006

●このパンフレットは再生紙を使用しています。

NO.34₂₀₀₆

リレーエッセイ

青森県六ヶ所村 レポート

その日、六ヶ所村は 「やませ」の霧に包まれていました。

工藤先生と訪ねる青森県・六ヶ所村

九州大学大学院工学研究院エネルギー量子工学部門 教授 工藤 和彦

再処理工場のアクティブ試験(実際の使用 済燃料を使い工場の安全性を確かめる試験) もいよいよ動き出し、試運転スケジュールが最 終段階を迎えた青森県・六ヶ所村。日本にお ける原子燃料サイクルのシンボルともいうべき この地は、プルサーマルによる原子力発電に も密接な関係がありながら、九州においてそ の認知度が高いとは言えず、またその状況や 取り組みも十分には伝わっていないようです。

そこで [とおみっく] では、九州大学大学院 工学研究院エネルギー量子工学部門の工藤 和彦教授に、本格的始動期を迎えた六ヶ所 村の施設<日本原燃(株)>を訪ねていただ きました。今号はそのレポートを特集いたします。

日本原子力発雷技術の 最先端を担う六ヶ所村

その日、青森県六ヶ所村の原子燃料サイ クル施設は、数メートル先も見えないほどの 深い霧に包まれていました。6月中旬で気温 は13℃。「寒いですねぇ」と工藤先生が思わ ず声をあげられました。「この季節は、こんな 天候が多いんです | と苦笑されたのは、一 行を案内してくださる西澤健司さん(日本原 燃(株)広報・地域交流室副部長)。「やま せのせいですよ」。やませ(山勢又は東風) とは、初夏から夏にかけてオホーツク海気団 より北海道・東北地方の太平洋側から関東 地方に向かって吹く風のこと。この風が吹くと、 沿岸部を中心に気温が下がり、霧が発生し やすくなります。やませが長引くと、低温と目

照不足によって、水稲などの農作物に被害 を及ぼすことも。「やませの影響もあり、この あたりは稲作が難しいのです。低温に強い 長芋など根菜類が農作物の中心になります と西澤さん。そのせいでしょうか、六ヶ所村で の生活は厳しく、電灯が灯ったのは青森県 でいちばん最後だったとか。その村が今では、 日本における原子力発電技術の最先端を担っ ていることに、運命の不思議さを感じました。

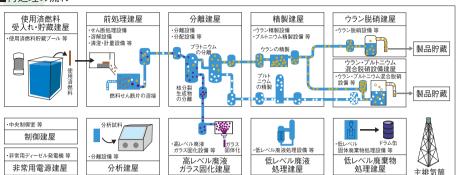
~ テロ防止への強固な意志を 感じる想像以上の警備体制

さて、見学の始まりです。一行は先ず制 御建屋へ。一行一人ひとりにカードが渡され、 そのカードでしか入り口ゲートは開きません。 また屋内の写真撮影は禁止。写真機能が 使用されないよう、携帯電話も預けなくては なりません。警備チェックは施設の通用門で も大変厳しいものでした。予め申し込んでお いた人数と名前を確認され、さらに写真付の 身分を証明するもの(免許証やパスポート)で、 一人ひとりがチェックを受けました。東京ドー ムの160個分という広大な敷地は二重三重 のフェンスに囲まれ、外部からの不審者の侵 入を許しません。記憶に生々しい2001年 9.11 の米国における同時多発テロ以来、警 備体制が、現在のように強化されたと西澤さ んから聞きました。「これくらいやらなくては、ね」 と、工藤先生はむしろ満足そうな面持ちでした。 この施設内の各建物には名称の表示があり ません。これもテロ対策のひとつなのです。

万全の安全管理を目指す 24時間体制の中央制御

▲ 中央制御室を興味深げに見つめる工藤先生

見学者ホールで施設全体の説明を聞い た後、中央制御室へ。ここでは施設全体を 多数のモニターや計器類で監視・制御して います。もちろん24時間体制。5班に分かれ た職員が三交代で絶え間なく作業しています。 目を引いたのは制御・監視技術を磨くため、 中央制御室のシステムと同じように作られた シミュレーションルーム。このような本格的施 設は世界でも唯一、ここにしかありません。ま た、原子燃料サイクル施設にはIAEA(国 際原子力機関)の職員が常駐し、24時間査 察を行っています。日本の原子燃料サイク ルにおける特徴は『核兵器に転用しづらい かたちで再処理』するということ、にも関わら ず、この厳重で細心な制御・監視・査察、そ して警備システム。工藤先生の笑みが、さら に深くなったような気がしました。



の施設の受入れ容量は3000トン·U。2006 年5月末現在の受入量は約1318トン・U。ま だ十分に余裕があります。冷却期間を終え た燃料は、次の前処理工程に移送されます。 なお再処理工場で回収されるプルトニウム・ ウランをプルサーマルとして利用するMOX 燃料に加工する工場は、敷地内で2012年に 操業開始予定です。

▲ やませの吹く初夏、緑の中に建つ六ヶ所村の諸施設

■再処理の流れ

環境モニタリングも 綿密に間断なく

▲ 六ヶ所村内に設けられた環境モニタリング施設

貯蔵施設を後にして向かったのは「環境 管理センター」。ここで職員の方のお話を聞 きました。原子燃料サイクル施設では、施設 内で発生する気体および液体廃棄物の放 射性物質は専用の設備で処理し、十分安全 なレベルであることを確認した上で放出して います。さらに施設周辺に影響を与えていな いことを確認するため、施設の操業前から環 境モニタリングを行っていました。環境モニタ リングは施設周辺の放射線量率、空気中の 放射能濃度の測定および土壌、農畜産物、 河川、海水など環境試料の採取と放射能分 析を行っています。青森県も同時に環境放 射能等の測定を実施し、相互のデータを青 森県が設置した「原子燃料サイクル施設環 境 放射線等監視評価会議 | で検討・評価し た後、県より定期的に公表しています。レク チャーの途中で工藤先生が「アクティブ試験 後の数値の変化はどうですかしという質問に 「上がったという結果は今のところ出ておりま せん。」という職員からの返答。「安心しまし た」。工藤先生は大変興味深げでした。

安全のための入念な配慮-「高レベル 放射性廃棄物貯蔵管理センター」

次に見学したのは「高レベル放射性廃棄 物貯蔵管理センター」。使用済燃料を再処

理することにより有用なウランとプルトニウム を分離した後、放射能レベルが高い核分裂 生成物が残ります。この放射能レベルの高 い核分裂生成物を高レベル放射性廃棄物 といいます。日本はフランスやイギリスに再処 理を委託していましたが、その過程で発生し た廃棄物を日本に引き取るため、このセンター が建設されました。廃棄物は、溶融炉の中で 溶かしたガラス原料と混ぜ合わせ、キャニスター (ステンレス製容器)に入れ冷やし固められ ています(ガラス固化体)。安定な形態に固 化した後、地層処分できる温度まで30年から 50年間程度冷却するための貯蔵を行い、そ の後、地下の深い地層中に処分することを 基本的な方針としています。このセンターの 貯蔵容量は1,440本。2006年5月末の受入 本数は1.180本。しかしフランスやイギリスから 返還される総数は約2.200本のため、増設工 事をしています。増設後の貯蔵容量は2,880 本になる予定です。もちろん、ここでも安全の ための配慮は入念。たとえば外部から貯蔵 庫を覗くガラスは、放射線の遮へいを考えて しつらえた、分厚い鉛ガラスになっています。

´ 昔と変わらないのは、 美しく雄大な自然と素朴で温かな人情

午前中の見学を終え、一行は施設を出て村 内の「ろっかぽっか」へ。ここは電気事業連 合会と日本原燃(株)が建設し、六ヶ所村に 寄付した、温泉センターです。センター内の豪 華なレストランでおいしい昼食(下北半島の 大間町からのマグロの刺身が最高!)をいた だきながら、よもやま話に花が咲きました。

1984年、原子燃料サイクル施設建設の要 請があった頃、この村は農業と漁業を中心と する村でした。大きな企業などはなく、若者 たちは村を出ていかざるを得ない状況でした。 しかし原子燃料サイクル施設の建設が始ま るとともに、村は見違えるように活気付きます。 日本原燃(株)は積極的に六ヶ所村や県内 の若者たちを雇用し、多くの関連企業もそ れにならいました。大きなプロジェクトには人 を引きつける磁力があります。やがて企業立 地も増え、村は県内でも有数の「元気な」地 域になりました。昔と変わらないのは、美しく 雄大な自然と素朴で温かな人情だけです。

~ どこよりも警備が厳重な ウラン濃縮T場

午後の見学は「ウラン濃縮工場」から。取 り扱うものがウランだけに、この施設の警備は 厳重です。先ず、空港に設置されているもの より感度が高い金属探知機を通ります。さら にカードキーでひとりずつ円形のドアを抜け、 ようやく中へ。もちろん複数の警備員が行動 を24時間監視しています。

天然ウランの中には、中性子が衝突すると 核分裂をして膨大な熱エネルギーを放出す るウラン235と核分裂しにくいウラン238があり ます。天然ウラン鉱石の中に含まれているウ ラン235の含有率はわずか0.7%しかなく、こ のままでは原子力発電所(軽水炉)の燃料 として使用することはできないため3~5%程 度にまで濃縮する必要があります。これをウ ラン濃縮といいます。その要となるのが遠心 分離機。これで濃縮するのです。

日本原燃(株)では、より高性能で電力消 費などの経済性に優れた新型遠心分離機 の開発に努め、平成22年頃の導入開始を目 指して、開発体制を強化しています。遠心分 離機の技術は核開発に直結するため、各国 はその情報を極力外部に漏らしません。その ため自国での開発が不可欠なのです。

日本のウラン濃縮は、核開発に繋がらない レベルに限定しています。それにもかかわわ らず警備は極めて厳重なうえ、IAEAの査察 も綿密に受けているのです。しかも安全性に は充分すぎるほどの配慮が行われています。 ここでも見学は外部からガラス越しに覗くだけ。

′ コンクリート+特殊な土で ガードする低レベル放射線廃棄物

最後の見学施設は「低レベル放射性廃 棄物埋設センター」です。全国の原子力発